Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 14(1): 9505, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664430

The effects of low-cost Thai leucoxene mineral (LM) at different concentrations (10, 20, 30, 40, 50, and 60 mg/L) on the growth and antibacterial properties of Chrysanthemum indium L. cuttings under in vitro were evaluated. The primary chemical composition of LM was approximately 86% titanium dioxide (TiO2), as determined by dispersive X-ray spectroscopy. The crystalline structure, shape, and size were investigated by X-ray diffraction and scanning electron microscopy. LM at 40 and 50 mg/L significantly increased plant height, leaf number, node number, and fresh and dry weight. These growth-promoting properties were accompanied by improved chlorophyll and carotenoid contents and antioxidant enzyme activities and reduced malondialdehyde levels. Additionally, LM treatment at 40 and 50 mg/L had positive effects on antibacterial activity, as indicated by the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The high levels of phenolic compounds in the plants contributed to the MIC and MBC values. In conclusion, these findings provide evidence for the effectiveness of LM in enhancing the growth of Chrysanthemum plants in in vitro culture and improving their antibacterial abilities.


Anti-Bacterial Agents , Chrysanthemum , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Carotenoids/chemistry , Chlorophyll/chemistry , Chrysanthemum/chemistry , Plant Leaves/chemistry , Thailand , Titanium/chemistry , Titanium/pharmacology
2.
J Nanosci Nanotechnol ; 15(3): 2564-9, 2015 Mar.
Article En | MEDLINE | ID: mdl-26413706

Sb-doped SnO2 nanopowders were synthesized by sonochemical-assisted precipitation process using stannic chloride pentahydrate (SnCl4.5H2O) and antimony chloride (SbC3) as starting precursors. Effect of sonication and Sb doping concentrations on physical structures and electrical properties of Sb-doped SnO2 nanoparticles were investigated by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, Raman spectroscopy and two-point probe method. The results indicated that the good dispersion with less agglomeration of particles in SnO2 phase can be obtained by single step sonochemical-assisted process. Moreover, XRD results indicated that the crystallinity of Sb-doped SnO2 nanopowders deteriorated with increasing Sb content, suggesting that Sb dopant significantly prevent SnO2 crystallite growth. The XPS spectra of Sb-doped SnO2 obviously confirmed the existence of Sb ion incorporated into SnO2 matrix. These results revealed that incorporation of Sb ions into SnO2 lattice with specific concentration has significant influence on formation and crystallization and can dramatically enhance the conductivity of tin oxide.

3.
J Nanosci Nanotechnol ; 11(7): 6483-9, 2011 Jul.
Article En | MEDLINE | ID: mdl-22121741

The core-shell nanocomposites of titanium dioxide (TiO2) and nickel oxide (NiO) used as modified photoelectrode materials in a quasi-solid-state dye-sensitized solar cell (quasi-DSSC) were synthesized using TiO2 P-25 and a nickel acetate precursor, via ball milling. The as-obtained intermediate products were annealed at 350, 450, and 550 degrees C. The structural properties of the NiO/TiO2 nanocomposites were well characterized via X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The results imply that NiO-shell-coated TiO2 nanoparticles can be obtained with the assistance of sufficient thermal energy in the system. The crystallite size of the composite increased as the annealing temperature increased. Among all the prepared conditions, the composite with 0.1 wt% NiO exhibited the best performance, with an optimized solar-energy conversion efficiency of 2.29% and with a short-circuit current density of 7.21 mA/cm2. The significant enhancement of the device's current density may be associated with the charge recombination suppression by the NiO shell, which acted as a potential barrier in the composite. The decrease in the recombination of the photo-injected electrons, and the increase in the number of electrons tunneling through the NiO layer at the interface, may have resulted from the presence of a NiO layer on the TiO2 nanoparticles.

...